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Abstract— Data-driven simulation has become a favorable
way to train and test autonomous driving algorithms. The idea
of replacing the actual environment with a learned simulator
has also been explored in model-based reinforcement learning
in the context of world models. In this work, we show data-
driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion
prediction and end-to-end driving, and based on TrafficBots
we obtain a world model tailored for the planning module of
autonomous vehicles. Existing data-driven traffic simulators are
lacking configurability and scalability. To generate configurable
behaviors, for each agent we introduce a destination as nav-
igational information, and a time-invariant latent personality
that specifies the behavioral style. To improve the scalability, we
present a new scheme of positional encoding for angles, allowing
all agents to share the same vectorized context and the use of
an architecture based on dot-product attention. As a result,
we can simulate all traffic participants seen in dense urban
scenarios. Experiments on the Waymo open motion dataset
show TrafficBots can simulate realistic multi-agent behaviors
and achieve good performance on the motion prediction task.

I. INTRODUCTION

To realize autonomous driving (AD) in the urban environ-
ment, the planning module of autonomous vehicles has to
address highly interactive driving scenarios involving human
drivers, pedestrians and cyclists. Despite being a necessary
step, the validation of planning algorithms on public roads
is often too expensive and dangerous. Therefore, simulations
have been widely adopted and efforts have been made to
develop photo-realistic driving simulators [1]. While the
full-stack simulators are popular for testing AD stacks and
training visuomotor policies, they are not the best choice
for developing planning algorithms because the simulated
scenarios are not as sophisticated and realistic as those
encountered in the real world. Moreover, the computationally
demanding rendering is redundant for AD planning modules
that expect intermediate-level representations as input.

Therefore, simulators tailored for AD planning should
have a different design and rely on real-world datasets. As
shown in Fig. 1, the player agent, i.e., the planning module,
generates a motion plan by observing some intermediate-
level representations. Then the simulator updates its internal
states and generates a new observation based on the actions
taken by the player agent. The internal states of the sim-
ulation can be separated into two categories depending on
whether they are reactive to the player agent. The scenario
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contexts, including the map and traffic controls, are non-
reactive states loaded from the datasets. The states of the
player agent are reactive and can be updated using vehicle
dynamics. Of the most importance for the simulation fidelity
are the bot agents, i.e., the non-player agents. The behaviors
of bot agents fall into three categories: the non-reactive log-
replay, the scripted behavior based on heuristics, and the
learned behavior which is our focus. To generate human-like
behaviors for bot agents, we present TrafficBots, a multi-
agent policy built upon two established research fields: multi-
modal motion prediction and end-to-end (E2E) driving.

As shown in Fig. 2, the TrafficBots policy is conditioned
on the destination of each agent, which approximates the
output of a navigator available in the problem formulation
of E2E driving [2]. To learn diverse behaviors from demon-
strations, each TrafficBot has a personality learned using
conditional variational autoencoder (CVAE) [3] following
multi-modal motion prediction. Compared to other methods,
TrafficBots consume less memory, scale to more agents,
and run faster than real time. This is achieved by using a
vectorized representation [4] for the context and sharing it
among all bots. A new scheme of positional encoding (PE)
is introduced for angles such that the memory-efficient dot-
product attention can be used to retrieve local information
from the shared context that lies in the global coordinate.

Using TrafficBots and a differentiable observation gener-
ator, the simulator in Fig. 1 is fully differentiable and it
summarizes the player agent’s past experience, hence it can
be trained and used like a world model [5]. In this paper
we focus on the TrafficBots and leave the training of player
agents as future work. We evaluate TrafficBots on both the
simulation and motion prediction tasks. We show that motion
prediction can be formulated as the a priori simulation, hence
it is a legit surrogate task for the evaluation of simulation
fidelity. While prior works on traffic simulation introduce
their own metrics, baselines and datasets, evaluation with
motion prediction ensures an open and fair comparison.
Although our performance is not comparable to the state-of-
the-art open-loop methods, TrafficBots shows the potential
of solving motion prediction with a closed-loop policy.

Our contributions are summarized as follows: We address
data-driven traffic simulation using world models and we
present TrafficBots, a multi-agent policy built upon motion
prediction and E2E driving. We improve the simulation con-
figurability by introducing the navigational destination and
the latent personality, as well as the scalability by introducing
a new PE for angles. Based on the public dataset and leader-
board, we propose a comprehensive and reproducible evalu-
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Fig. 1: World model for AD planning modules. The simulator is fully data-driven and differentiable.
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Fig. 2: TrafficBots, a multi-agent policy that generates realistic behaviors for bot agents by learning from real-world data.

ation protocol for traffic simulation. Our repository is avail-
able at https://github.com/zhejz/TrafficBots

II. RELATED WORK

World models [5] are action-conditional dynamics models
learned from observational data. As a differentiable substitute
of the actual environment, world models can be used for
planning [6] and policy learning [7]. In this paper, we use
world models to address a new problem: traffic simulation.
We seek to obtain a world model realistic enough to replace
the real world or full-stack simulators for developing AD
planning algorithms. Training world models is often formu-
lated as a video prediction problem such that the method
can generalize to all image-based environments, like Atari [8]
and highway driving [9]. Although the same approach can be
applied to urban driving via rasterization, this would cause
unnecessary complexity because most dynamics of driving
can be explicitly modeled without deep learning. In fact,
only the decision-dynamics of the bot agents that have a
potential to interact with the player agent have to be learned.
To this end, we introduce the multi-agent policy TrafficBots
and based on it we build a world model for AD planning.

Motion prediction for AD is a popular research topic.
Here we only discuss the most relevant works and refer
the reader to [10] for a detailed review. Our TrafficBots
use a network architecture based on Transformers [11]
and vectorized representations [4] because they achieve top
performance [12], [13] while being computationally more
efficient [14]. To improve the multi-agent performance, our
Transformer-based architecture uses a new PE for angles.
Goal-conditioning can improve the performance of AD plan-
ning [15], [16] and motion prediction [17]–[20], but it leads
to causal confusions if applied to closed-loop policy. This
problem is solved by replacing the goal, which is associated
with the prediction horizon, with the destination, which is
time-independent and emulates a navigator. Once condi-
tioned on the destination, the behavior of TrafficBots agent is
characterized by a time-invariant personality. The personality
is represented as the latent variable of a CVAE, which is used

to address the multi-modality of motion forecasting [21]–
[24]. Unlike other works, we use a time-invariant personality,
i.e., a fixed sample is used throughout the simulation horizon.
Finally, TrafficBots is related to [25]–[27] in the sense that
a recurrent policy is learned and combined with vehicle
dynamics. However, our method is recurrent and closed-loop,
whereas motion prediction methods are open-loop.

Data-driven simulation can reduce the sim-to-real gap
while being more efficient and scalable than manually de-
veloping a simulator. While many works on data-driven sim-
ulation focus on the photo-realism [28]–[30], we study the
behavior-realism of bot agents. Compared to the hand-crafted
rules [1], [31], [32], more realistic behaviors can be generated
through log-replay [33], [34] or learning from demonstra-
tions [35]. The problem of learning realistic behaviors is
formulated as generative adversarial imitation learning [36]
in [37], as behavioral cloning in [38] and as flow prediction
in [39]. Most related to our method is TrafficSim [40], an
auto-regressive extension of the motion prediction method
ILVM [22]. Compared to our method, TrafficSim is not based
on world models or E2E driving, it uses rasterization and
it does not factorize the uncertainty into personality and
destination. Finally, our simulation shown in Fig. 1 can be
considered a data-driven extension of SMARTS [41], and
TrafficBots shown in Fig. 2 can be used as a sub-module to
control bot agents in other simulators [1], [32], [41].

III. PROBLEM FORMULATION

We use motion prediction datasets to train a policy, which
can be used for simulation if a complete episode is given,
and for motion prediction if only the history is available.

Data representation. Each episode in the motion pre-
diction dataset includes the static map M ∈ RNM×Nnode×4,
traffic lights C ∈ RT×NC×4, agent states ŝ ∈ RT×NA×6 and
agent attributes u ∈ RNA×4, where NM is the number of map
polylines, Nnode is the number of nodes per polyline, NC is
the number of traffic lights and NA is the number of agents.
We define t = 0 to be the current step, Th to be the history
length and Tf to be the future length. A polyline node or a
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dimensions are omitted for conciseness. The shared and private contexts are encoded only once at the start of an episode.

traffic light is represented by (x, y, θ, u) where x, y are the
positions, θ is the yaw angle and u is the polyline type or
light state. The ground truth (GT) state of agent i at step t
is denoted by ŝit = (x, y, θ, θ̇, v, a) where θ̇ is the yaw rate,
v is the speed and a is the acceleration. The time-invariant
agent attribute u includes the agent size and type of each
agent. We use a scene-centric, vectorized representation [12]
to ensure the efficiency of the simulation.

Simulation. We denote the states of TrafficBots agents
as s and the states of other agents, including the player and
other bots, as s†. Given a complete episode, we initialize
the simulation with the history t ∈ [−Th, 0] and rollout for
the future steps t ∈ [1, Tf]. We assume all uncertainties
can be explained by the GT future, thus the simulation
can be formulated as predicting a single-modal next state
st+1 given st and s†t . Given the GT future, the simulation
has two formulations: counterfactual and a posteriori. In
counterfactual simulation the behavior of some agents, e.g.
the player agent, might deviate from the GT, i.e., s† ̸= ŝ†.
In this case TrafficBots should be reactive to the change and
behave naturally. In the second case, if all agents are either
controlled by TrafficBots or log-replay agents, the simulation
should ideally reconstruct the same episode. In the spirit of
world models, we refer to this as the a posteriori simulation.

Motion prediction. We formulate motion prediction as
the a priori simulation, a special case of the a posteriori
simulation where TrafficBots control all agents and the GT is
given for t ∈ [−Th, 0]. In this case, rolling out for t ∈ [1, Tf]
is equivalent to predicting s1:NA

1:Tf
, the joint future of all agents.

Since the GT future is unavailable and multiple futures are
possible given the same history, the a priori simulation is
multi-modal and each rollout represents one possible way of
how the scenario could evolve. In fact, a priori simulation is
equivalent to the multi-modal joint future prediction, which
is a more difficult and hence less common task in comparison
to the multi-modal marginal motion prediction that considers
the prediction independently for each agent.

IV. TRAFFICBOTS

As shown in Fig. 3, the TrafficBots policy is conditioned
on shared and private contexts which are encoded beforehand
and explain all uncertainties, thus the rollout is deterministic.

A. Policy

The policy predicts agent states at the next step st+1, based
on the current states st and the contexts. After encoding st,
the contexts are sequentially injected into the encoded states
st. We use Transformer encoder layers with cross-attention
to update st by attending to the encoded map M and the en-
coded traffic lights Ct. The interaction Transformer uses self-
attention across the agent dimension to allow agents to attend
to each other. At inference time, states of non-TrafficBots
agents s†t will also be processed by these Transformers such
that TrafficBots can react to them. After incorporating the
map, traffic lights and states of other agents, each agent has a
recurrent unit to aggregate its history because the simulation
states are not Markovian. Then the outputs are combined
with the agent’s individual destination and personality via
concatenation and residual MLP. Finally, the actions of each
agent are predicted by the action heads and st+1 is computed
by the dynamics module based on the actions and st.

B. Contexts

State encoder. Following [12], all shared contexts, i.e.,
the map M, traffic lights C and agent states s, are repre-
sented in the global coordinates and incorporated via dot-
product attention. This approach is computationally more
efficient than transforming the global information to the
local coordinate of each agent. However, the dot-product
attention alone cannot efficiently model a global to local
coordinate transform. To remedy this issue, PE is introduced.
Without PE, VectorNet [4] has to transform all contexts to
the local coordinate of each agent. SceneTransformer [12]
concatenates the PE for position with the unit vector for
direction and other attributes u, and then feeds it to an MLP:

s = MLP(cat(PE(x),PE(y), cos θ, sin θ, u)), (1)

with PE2i(x) = sin(x · ω
2i

demb ), PE2i+1(x) = cos(x · ω
2i

demb ),

where i ∈ [0, . . . , demb/2], ω is the base frequency and
demb is the embedding dimension. This state encoder can
be improved by using PE also for the direction vector [42]
and adding the PE after the MLP [11]. This ends up with

s = cat(PE(x),PE(y),PE(cos θ),PE(sin θ))+MLP(u). (2)
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However, empirically we observe TrafficBots using this state
encoder is not sensitive to directional information. To address
this issue, we propose the following state encoder

s = cat(PE(x),PE(y),AE(θ),MLP(u)) (3)
with AE2i(θ) = sin(θ · i), AE2i+1(θ) = cos(θ · i)

where i ∈ [1, . . . , demb/2 + 1] and AE stands for angular
encoding, a special case of sinusoidal PE we introduced to
encode the radian yaw θ. Compared to PE that has to use
a small ω to avoid overloading the 2π period, AE can use
integer frequency because it encodes an angle. Moreover, the
addition is replaced by concatenation because other states,
e.g. velocity, are highly correlated to the pose encoded by
PE and AE. We use the state encoders to encode the map,
traffic lights and agent states. Our map encoder follows [4],
except that we use Transformers for the polyline sub-graph.

Destination. Fig. 4 highlights the difference between our
destination and the goal proposed in prior works [17]–
[20]. The GT goal, which is associated to the last observed
position, does not reflect an agent’s intention. In Fig. 4, the
vehicle stops because of the red light, whereas the pedestrian
does not intend to stay in the middle of a crosswalk. Al-
though this is not a problem for open-loop motion prediction,
the driving policy would learn a wrong causal relationship
if conditioned on the goal. This problem can be solved
by introducing a navigator, which specifies the next goal
once the current one is reached. However, running an online
navigator for every agent is computationally demanding.
For simulation with a short horizon and small maps, it is
sufficient to estimate one destination for the near future, and
switch to an unconditioned policy once that destination is
reached. Since the GT destination is not available in any
motion prediction datasets, we approximate it with a map
polyline heuristically selected by extending the recorded
agent trajectory based on the map topology. For training
and simulation we use the approximated GT destination
ĝ, whereas for motion prediction we predict g. Predicting
the destination is formulated as a multi-class classification
task where the logit for polyline i and agent j is predicted
by MLP(cat(Mi,GRU(sj−Th:0

))), i.e., the destination of an
agent depends only on the map and its own history.

Personality. In order to address the remaining uncertain-
ties not explained by the destination and to learn diverse

TABLE I: Results on the WOMD (marginal) leaderboard.

test mAP
↑

min
ADE ↓

min
FDE ↓

miss
rate ↓

overlap
rate ↓

DenseTNT [18] 0.328 1.039 1.551 0.157 0.178
SceneTransformer [12] 0.279 0.612 1.212 0.156 0.147
MultiPath [43] static 0.236 0.880 2.044 0.345 0.166
Waymo LSTM [44] 0.176 1.007 2.355 0.375 0.190
TrafficBots (a priori) 0.212 1.313 3.102 0.344 0.145

valid TrafficBots ↑ ↓ ↓ ↓ ↓

a priori (K=6) 0.210 1.291 3.117 0.346 0.143
GT sdc future (what-if ) 0.214 1.281 3.095 0.342 0.142
GT traffic light (v2x) 0.209 1.288 3.100 0.345 0.143
GT destination (v2v) 0.217 1.292 3.123 0.345 0.142
a posteriori (K=1) 0.332 0.962 2.034 0.339 0.129

behaviors of different human drivers, pedestrians and cy-
clists, we introduce a latent personality for each agent which
is learned using CVAE. Similar ideas have been applied to
world models [5]–[7] and motion prediction [21]–[23]. The
personality encoder has a similar architecture as the policy
network in Fig. 3. For training and simulation, we use the
posterior zpost which is estimated from the complete episode
t ∈ [−Th, Tf], whereas for motion prediction we use the prior
zprior that encodes only the history t ∈ [−Th, 0]. In contrast
to TrafficSim [40] which updates the latent at each time step
to address all uncertainties, our personality is time-invariant
because the behavioral style of an agent will not change in
a short time horizon if the destination is determined.

C. Training

Similar to world models [5], our training uses reparameter-
ization gradients and back-propagation through time (BPTT).
Given a complete episode, we first encode the map M, traffic
lights C and GT agent states ŝ. Then we predict zpost, zprior
and the destination g. Conditioned on the GT destination ĝ
and a sample of zpost we rollout the policy. For t ∈ [−Th, 0]
we warm-start using teacher-forcing with GT agent states,
whereas for t ∈ [1, Tf] the rollout is auto-regressive. All
components are trained simultaneously using the weighted
sum of three losses: the reconstruction loss with smoothed L1
distance for the states (x, y, θ, v), the KL-divergence between
zpost and zprior clipped by free nats [6], and the cross-entropy
loss for destination prediction. Following [7], we stop the
gradient from the action and allow only the gradient from
the states during the BPTT. We train with all agents so as to
generate realistic behaviors for all traffic participants, not just
for the interested ones heuristically selected by the dataset.

D. Implementation Details

We use a 16-dim diagonal Gaussian for the personality.
The action heads and dynamics have the same architecture
but different parameters for vehicles, cyclists and pedestrians.
We use a unicycle model with constraints on maximum yaw
rate and acceleration for all types of agents. With a hidden
dimension of 128 our model has less than 3M parameters.
Considering 64 agents, 1024 map polylines and a sampling
time of 0.1 second, we can parallelize 16 simulations on one
2080Ti GPU while each rollout step takes around 10 ms,
which is a magnitude faster than other methods [37]–[40].



TABLE II: Ablation on the WOMD validation split. All models are trained for 24K iterations (48 hours).

a priori simulation K=6 (motion prediction) a posteriori simulation K=1

mAP
↑

min
ADE ↓

min
FDE ↓

miss
rate ↓

overl.
rate ↓

NLL ↓
(×10−7)

dif. pos
(m) ↓

dif. rot
(deg) ↓

veh col
(%) ↓

run red
(%) ↓

passive
(%) ↓

miss
rate ↓

Our best TrafficBots 0.18 1.49 3.66 0.39 0.15 1.37 0.80 2.84 11.5 1.31 19.1 0.42

Encoder Eq. 1 0.12 1.74 4.48 0.48 0.18 1.90 0.74 3.05 14.7 1.47 19.4 0.49
Eq. 2 0.14 1.62 4.12 0.46 0.17 1.48 0.74 3.02 13.8 1.46 19.3 0.48

Personality w/o persona 0.06 1.66 4.09 0.48 0.15 1.16 1.29 3.63 13.6 1.50 19.2 0.53
larger KL 0.15 1.65 4.19 0.42 0.17 1.88 0.47 2.39 12.9 1.56 19.1 0.24

Destination
w/o dest. 0.16 1.53 3.80 0.40 0.15 1.44 0.74 2.63 11.8 1.29 19.3 0.41
goal 0.17 1.47 3.44 0.40 0.16 2.02 0.78 2.68 12.3 1.35 20.2 0.42
goal w/o navi 0.14 1.57 3.83 0.45 0.17 3.39 0.79 2.97 15.1 1.40 23.3 0.49

World Model w/o free nats 0.18 1.52 3.74 0.40 0.16 1.39 0.86 3.00 12.6 1.31 19.1 0.44
w/ action grad. 0.17 1.51 3.71 0.41 0.16 1.39 0.90 2.82 12.6 1.30 19.1 0.46

SimNet [38]
BC w/o pers. & dest. 0.01 2.76 7.77 0.76 0.21 2.64 2.27 7.37 21.9 1.59 19.6 0.76
w/o pers. & dest. 0.02 1.91 4.95 0.55 0.15 1.10 1.34 3.69 13.6 1.46 19.2 0.54
BC 0.09 3.11 9.24 0.73 0.21 3.34 2.99 7.56 33.4 4.27 19.3 0.76

TrafficSim [40]
w/o dynamics 0.14 1.81 4.37 0.46 0.17 1.68 0.72 55.18 48.0 1.73 18.9 0.45
inter. decoder 0.17 1.52 3.73 0.41 0.16 1.66 0.75 2.85 12.8 1.46 19.2 0.22
resample pers. 0.14 1.81 4.74 0.47 0.16 1.56 0.49 2.45 12.8 1.55 19.5 0.29

V. EXPERIMENTS

Dataset. We use the Waymo Open Motion Dataset
(WOMD) [44] because compared to other datasets it has
longer episode lengths and more diverse and complex driving
scenarios, such as busy intersections with pedestrians and
cyclists. The WOMD is also one of the largest motion
prediction datasets, consisting of 487K episodes for training,
44K for validation and 45K for testing. With a fixed sampling
time of 0.1 second, each episode is 9 seconds long and
contains 91 steps: Th = 10 for the history, one for the current
t = 0, and Tf = 80 future steps that shall be predicted.

Tasks. Ultimately we want to verify the fidelity of the
counterfactual simulation, such that the simulator can be
used for training and testing planning modules. However,
once the scenario diverges from the factual recording, the
GT trajectories can no longer be used for evaluation metrics.
To this end, different surrogate metrics have been proposed,
such as traffic rule compliance [40] and distribution of
curvatures [37]. But these metrics cannot fully reflect the
behavioral fidelity because they consider only vehicles and
neglect pedestrians and cyclists. Moreover, performing well
on these metrics does not mean the behavior is human-like,
in fact good performance can be achieved by a hand-crafted
policy. Alternatively we can verify the fidelity of the a poste-
riori simulation, where the scenario should be reconstructed
and the performance can be quantified by the distance to the
GT trajectories. But since the GT future is given, a model
can achieve good performance by misusing the posterior
latent to memorize the GT future, instead of learning the
underlying human-like behavior. In fact, the best possible
performance can be simply achieved via log-replay. We argue
the a priori simulation, i.e., motion prediction, together with
the a posteriori simulation is a better evaluation setup. For
a priori simulation, the model predicts multiple futures of
how an episode might evolve. While all predictions should
demonstrate natural behaviors, at least one of them should

reconstruct the GT future. Importantly, motion prediction
is usually formulated as an open-loop problem. Although
TrafficBots can be used for motion prediction by formulating
it as the a priori simulation, the performance will be affected
by the covariant shift and compounding errors [45] caused by
the closed-loop rollout. Nevertheless, we show the potential
of solving motion prediction with a multi-agent policy.

Metrics. For motion prediction we follow the metrics
of WOMD [44], including the accuracy metrics mAP, the
distance-based minADE/FDE and miss rate, and the surro-
gate metric overlap rate. Inspired by [24], we further examine
the sampling-based negative log-likelihood (NLL) of the GT
scene. The WOMD specifies up to 8 agents that shall be
predicted and allows up to K=6 predictions. Accordingly,
we generate 6 rollouts, i.e., the joint future of all agents,
by sampling the destination and the prior personality. For a
posteriori simulation, only one rollout is generated using the
most likely posterior personality and the GT destination. The
simulation fidelity is evaluated using traffic rule violation rate
and distance to GT trajectories. The differences in position
and rotation are averaged over all steps and agents, whereas
the rates of collision, running a red light and passiveness
(stop moving for no reason) are for vehicles only.

Comparison with motion prediction methods. In the
first half of Table I we compare TrafficBots with open-
loop motion prediction methods on the Waymo (marginal)
motion prediction leaderboard. In terms of mAP we are better
than the Waymo LSTM baseline [44], but worse than other
methods because TrafficBots is not optimized to generate
diverse predictions which is favored by the mAP metrics.
Although the miss rates are comparable, the minADE/FDE
of our method are significantly higher than other methods.
This can be explained by the compounding errors caused
by the auto-regressive policy rollout. While this drawback
is well-known for closed-loop methods, TrafficBots still has
its advantage which is shown by the reduced overlap rate.



Compared to the open-loop methods, it is easier for a policy
to learn the correct causal relationship. The second half
of Table I shows that the prediction performance can be
improved given additional information. Since the predictions
are generated via rollout, we can set some of the future
observations to their GT. For example, for conditional motion
prediction (what-if ) the future trajectory of the self-driving-
car is given. Furthermore, the future traffic light states and
the destinations could be obtained via vehicle-to-everything
(v2x) or vehicle-to-vehicle (v2v) communication. Having
access to all future information, the a posteriori simulation
achieves the best performance with a single (K=1) prediction.

Ablations. In Table II we ablate the state encoders, per-
sonality, destination and world-model training techniques on
both the a priori and the a posteriori simulation. Our state
encoder Eq. 3 with AE performs overall better than Eq. 1 and
Eq. 2. Without the personality, the policy is unable to capture
the diverse behaviors of different traffic participants. If we
allow a larger KL divergence by downweighting the KL loss,
the performance is better for a posterior simulation but worse
for motion prediction. Then we have TrafficBots w/o desti-
nation where the latent captures all uncertainties. In this case
the model performs worse on motion prediction because the
Gaussian latent suffers from mode averaging. If the policy
is conditioned on the goal, i.e., the polyline associated with
the last observed pose, then the model will learn a wrong
causal relationship and the traffic rule violation rates will
increase even though the minADE/FDE are smaller. If we
use the goal w/o navigator module that drops the goal once
it is reached, the policy learning will fail completely and the
performances are overall inferior. Finally, we show world-
model training techniques can improve the performance of
TrafficBots. To further compare with prior works on traffic
simulation, we ablate more design differences between our
method and SimNet [38], which uses behavioral cloning
(BC) without personality or destination, as well as Traffic-
Sim [40]. Generally, TrafficBots performs better but there are
three interesting exceptions: Firstly, if we allow a larger KL
or resample pers., the posterior will memorize the GT future
and the prior will fail to infer the personality. Consequently
the model performs better for a posterior simulation but
worse for motion prediction, and the traffic rule violation
rates are higher because the model masters the memorization
rather than the driving skills. This highlights the importance
of using a time-invariant personality and the advantage of
evaluating with both a priori and a posteriori simulation. Sec-
ondly, models without personality have smaller NLL. This
is reasonable because models without CVAE generate less
diverse predictions, hence the NLL is smaller. Finally, the
model with an interactive decoder following TrafficSim [40]
shows a smaller miss rate during a posteriori simulation.
This is achieved by adding the private contexts before the
interaction Transformer, such that private contexts are shared
among all agents. However, this requires the personality and
destination of all agents to be known before the rollout,
which is infeasible if the simulation includes a player agent
whose future actions are undetermined.

(a) A vehicle entering the parking lots.

(b) A cyclist crossing the road through the crosswalk.

Fig. 5: In each sub-figure, left: predicted trajectories; right:
heat map of predicted destinations. Agent of interest and
GT are in magenta. A priori predictions are in cyan. A
posteriori simulated trajectory is in yellow. The brightness is
proportional to the probability in the destination heat map.

Qualitative results. Fig. 5 shows two examples of the
prediction and simulation results. In both cases, one of the a
priori predictions matches the GT, whereas the a posteriori
simulation reconstructs the scenario with less deviation. With
similar destinations but sampled personalities, five predic-
tions in Fig. 5a follow the lane with different speeds and
lane selections. With predicted destinations on both sides of
the road, the cyclist in Fig. 5b is predicted to either cross
the road or follow the road edge.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented TrafficBots, a multi-agent policy
learned from motion prediction datasets. Based on the shared,
vectorized context and the individual personality and destina-
tion, TrafficBots can generate realistic multi-agent behaviors
in dense urban scenarios. Besides the simulation, TrafficBots
can also be used for motion prediction. Evaluating on motion
prediction tasks allows us to verify the simulation fidelity and
benchmark on a public leaderboard. Based on TrafficBots,
we build a differentiable, data-driven simulation framework,
which in the future can serve as a platform to develop
AD planning algorithms, or as a world model to train E2E
driving policies via reinforcement learning [2] or model-
based imitation learning [33]. Moreover, TrafficBots could
also be integrated as a module to generate human-like be-
haviors for bot agents in a game or a full-stack AD simulator.
Future work will investigate better network architectures and
training techniques, the downstream tasks, and combining
data-driven traffic simulation with neural rendering.
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APPENDIX

A. Supplementary Video

The supplementary video for the paper is found here
at https://youtu.be/2idvJOqbXeo. This video con-
tains more experimental results generated by TrafficBots.
The video is nicely edited and exhaustively commented. It
includes two episodes, the first episode highlights a vehicle
making an U-turn on a narrow street, whereas the second
episode is at a busy intersection with traffic lights and a
large number of traffic participants. For each episode, we
first show the results of a posteriori simulation and a priori
motion prediction, and then we inspect agents demonstrating
the most interesting behaviors. Besides the good cases, this
video also presents the bad cases where our method failed
to generated realistic behavior.

B. Dataset and Pre-Processing

We use the unfiltered 9-second datasets (scenario, not the
filtered tf example) from the WOMD, these are: testing, test-
ing interactive, training, validation, validation interactive.
The WOMD also provides a full-length training dataset
training 20s, which includes the original 20-second-long
episodes. In contrast to the 9-second datasets which are
clipped from the 20-second-long episodes, episodes in the
training 20s do not always have a fixed length. Although
we did not use the 20-second dataset, future works can take
advantage of it for simulation with a longer time horizon. We
pre-process the dataset by first filtering the map polylines:

1) Split the original map polylines into shorter polylines
with maximum Nnode = 20 nodes one meter away from
each other.

2) Remove polylines too far away from any agents.
3) Remove polylines that contain too few nodes.
4) Continue removing polylines based on the distance

to agents, until the number of remaining polylines is
smaller than a threshold NM = 1024.

Then we filter the traffic lights which are associated with
map polylines. A traffic light will be filtered if its map
polyline is removed. Finally we filter agents as follows:

1) Remove agents that are tracked for too few steps.
2) Remove agents that have small displacement and large

distance to any of the relevant agents marked by the
WOMD or any of the map polylines. These agents are
mostly parking vehicles.

3) Remove vehicles that have small displacement but
large yaw change, which are caused by tracking errors.

4) Continue removing irrelevant agents based on the dis-
tance to relevant agents, until the number of remaining
agents is smaller than a threshold NA = 64.

After the filtering, we center the episode such that the
position of the self-driving-car is at (0, 0). The training
episodes are randomly rotated by an angle between −π and
π, whereas the validation and testing episodes are unaffected.
We smooth the agent trajectories and fill in the missing steps
via temporal linear interpolation. A pre-processed episode
has T = 91 steps and includes the following data:

1) Agent states
• agent/valid: [T,NA], Boolean mask.
• agent/pos: [T,NA, 2], x, y positions.
• agent/vel: [T,NA, 2], velocities in x, y directions.
• agent/spd: [T,NA, 1], m/s
• agent/acc: [T,NA, 1], m/s2

• agent/yaw bbox: [T,NA, 1], rad.
• agent/yaw rate: [T,NA, 1], rad/s.

2) Agent attributes
• agent/type: [NA, 3]; vehicle, pedestrian, cyclist.
• agent/role: [NA, 3], 3 types of role; self-driving-

car, agent of interest, agent to predict.
• agent/size: [NA, 3], length, width, height.

3) Map
• map/valid: [NM, Nnode], Boolean mask.
• map/type: [NM, 11], 11 types of polylines. They

are freeway, surface street, stop sign, bike lane,
road edge boundary, road edge median,
solid single, solid double, passing double yellow,
speed bump and crosswalk.

• map/pos: [NM, Nnode, 2], x, y position of nodes.
• map/dir: [NM, Nnode, 2], a 2D vector pointing to

the next node.
4) Stop point of traffic lights

• tl stop/valid: [T,NC], Boolean mask.
• tl stop/state: [T,NC, 5], 5 types of states; un-

known, stop, caution, go and flashing.

https://youtu.be/2idvJOqbXeo


• tl stop/pos: [T,NC, 2], position of the stop point.
• tl stop/dir: [T,NC, 2], direction of the stop point.

C. Ground-Truth Destination

The GT destinations are not available in any motion pre-
diction datasets. Therefore, we use the following heuristics
to approximate the GT destination of an agent:

• If the agent is a vehicle on a lane, i.e. the last observed
pose of the agent is close enough to a driving lane
in terms of position and direction, then we find the
destination by randomly selecting one of the successors
of that lane base on the map topology. This step will be
repeated multiple times. These agents are vehicles driv-
ing on the road. In this case the type of the destination
is either freeway, surface street or stop sign.

• If the agent is a vehicle not on lane, then we extend the
last observed pose with constant velocity for 5 seconds.
After that the road edge boundary polyline closest to
that extended position will be selected. These agents
are mostly vehicles in parking lots.

• For cyclists on bike lanes, we extend the last position
with constant velocity and find the closest bike lane.

• For cyclists not on bike lanes or pedestrians, we find
the road edge boundary polyline closest to the position
extended using constant velocity.

For the ablation we have a model trained with goal instead
of destination. In this case the goals are still polylines and
the GT goals are still approximated using the aforementioned
method, with the exception that we do not extend the last
observed position using map topology or constant velocity.
The map polyline closest to the last observed position will
be directly used as the goal. Unlike motion prediction meth-
ods [17], [18] that predict an accurate goal and then simply
fit a smooth trajectory towards the goal, our destination is
less informative such that the motion profile is determined
solely by the policy. The destinations are pre-processed and
saved as agent attributes agent/dest : [NA]. We save the
indices of the corresponding map polyline, hence the value
of agent/dest ranges from 1 to NM.

D. Detailed Network Architecture

We use dropout probability 0.1 and ReLU activation.
State Encoders. The architecture of the state encoders

discussed in the main paper are visualized in Fig. 6.
Transformers. We use the Transformer encoder layer

with cross-attention as shown in Fig. 7. The layer norm is
inside the residual blocks [46]. If the query, key and value
share the same tensor, then the cross-attention boils down to
self-attention which is used by the interaction Transformer.

Combine Personality and Destination. As shown in
Fig. 8, the personality, or the destination, is injected to the
intermediate state via concatenation, MLP and residual sum.
Since the personality is always valid, the masking is unnec-
essary for combining personality. In terms of destination, the
masking is based on a reached indicator. If the destination is
reached, then the output of the residual block will be masked

such that the intermediate states remain unchanged and the
destination no longer affects the policy.

Action Heads. We use a two-layer MLP to predict the
acceleration and the yaw rate of each agent. We instantiate
three action heads with the same architecture; one for each
type of agent. The outputs of action heads are normalized to
[−1, 1] via the tanh activation.

Dynamics. Following MultiPath++ [10] we use a uni-
cycle dynamics with constraints on maximum yaw rate
and acceleration for all types of agents. For vehicles the
acceleration is limited to ±5m/s and the yaw rate is limited
to ±1.5 rad/s. For cyclists we use ±6m/s, ±3 rad/s and for
pedestrians ±7m/s, ±7 rad/s. The outputs of action heads
are multiplied by the maximum allowed acceleration or yaw
rate to obtain the final actions.

Personality Encoder. The inputs to the map, traffic lights
and interaction Transformer of the personality encoder are
reshaped differently. For the map encoder, we flatten the
agent states tensor with shape [B, T,NA] to [B, T ×NA] and
use it to query the map with shape [B,NM]. This allows each
agent at each time step to attend to the map independently.
For the traffic lights Transformer, the agent states tensor with
shape [B, T,NA] is flattened to [B × T,NA] and the traffic
lights with shape [B, T,NC] is flattened to [B × T,NC]. In
this case, the agents states can only attend to the traffic lights
from the same time step. Similarly, inputs to the interaction
Transformer are reshaped from [B, T,NA] to [B × T,NA],
such that an agent can only attend to other agents’ states
from the same time step. We use two personality encoders
with the same architecture to encode the posterior and the
prior personality respectively.

Latent Distribution of Personality. The personality
encoder predicts the mean of a 16-dimensional diagonal
Gaussian for each agent. The standard deviation is a learnable
parameter independent of any inputs. We initialize the log
standard deviation to −2 for all the 16 dimensions. The
standard deviation parameter is shared by agents from the
same type (vehicle, pedestrian, cyclist).

Predicting Destinations. The destination of agent j
depends only on the encoded map M and its own encoded
history states sj−Th:0

. Given Mi, the hidden feature of the
ith polyline of the encoded map M, the logit pji for polyline
i and agent j is predicted by

pji = MLP(Mi,GRU(sj−Th:0
)),

where i ∈ {1, . . . , NM}, j ∈ {1, . . . , NA}.

Based on these logits, the destinations of agent j are rep-
resented by a categorical distribution with NM classes and
the probability is obtained via softmax. After obtaining the
polyline index i, the predicted destination g is the encoded
polyline feature Mi indexed by i. The polyline indices of the
GT destinations are saved during the dataset pre-processing.

E. Training Details

We use six 2080Ti GPUs for the training with a batch
size of 4 on each GPU, i.e. the total batch size is B = 24.
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Fig. 6: State encoders with different architectures.
TABLE III: Performance on the Waymo (joint) interactive prediction leaderboard

test soft mAP ↑ mAP ↑ minADE ↓ minFDE ↓ miss rate ↓ overlap rate ↓

DenseTNT [18] N/A 0.165 1.142 2.490 0.535 0.231
SceneTransformer (J) [12] N/A 0.119 0.977 2.189 0.494 0.207
Air2 [47] N/A 0.096 1.317 2.714 0.623 0.247
HeatIRm4 [48] N/A 0.084 1.420 3.260 0.722 0.284
Waymo LSTM [44] N/A 0.052 1.906 5.028 0.775 0.341
TrafficBots (a priori) 0.113 0.111 1.669 4.514 0.681 0.220

valid TrafficBots soft mAP ↑ mAP ↑ minADE ↓ minFDE ↓ miss rate ↓ overlap rate ↓

a priori (K=6) 0.102 0.100 1.670 4.514 0.677 0.221
GT sdc future (what-if ) 0.110 0.108 1.577 4.317 0.651 0.215
GT traffic light (v2x) 0.102 0.100 1.663 4.485 0.675 0.221
GT destination (v2v) 0.106 0.103 1.640 4.440 0.668 0.223
a posteriori (K=1) 0.188 0.188 1.085 2.313 0.602 0.165
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Fig. 8: Combine personality/destination.

Due to the large size of the WOMD training dataset, in each
epoch we randomly select 15% from the complete training
and validation datasets. We use the Adam optimizer with
a learning rate of 4e-4. The learning rate is halved every
7 epochs. The model converges after about 30 epochs, that
is almost a week. We predict the posterior personality zpost
using the posterior personality encoder and information from
t ∈ [−Th, Tf]. Similarly zprior is predicted using the prior
personality encoder and information from t ∈ [−Th, 0]. The
logits of destinations are predicted using the encoded map
M and the GT agent states ŝ−Th:0 from the past. From the
logits we use softmax to obtain a multi-class categorical
distribution of the destination of each agent P 1:NA

dest , which
has NM classes; one for each map polyline. During the
training we rollout with the GT destination and the posterior
personality zpost. Our training loss has the following terms:

1) Reconstruction loss, which trains the model to recon-
struct the GT states using the posterior personality and
the GT destination. It is a weighted sum of:

• A smoothed L1 loss between the predicted (x, y)
positions and the GT positions.

• A cosine distance between the predicted yaw θ and
the GT yaw θ̂, i.e. 0.5 · (1− cos(θ − θ̂)).

• A smoothed L1 loss between the predicted velocity
and the GT velocity.

2) The KL divergence between the posterior and the
prior personality, which trains the prior to match the
posterior and regularize the posterior at the same time.
We use free nats [6] to clip the KL divergence, i.e. if
KL(zpost, zprior) is smaller than the free nats, then the
KL loss is not applied. We use a free nats of 0.01.

3) The cross entropy loss for destination classification.
Since the GT destination is a single class, this loss boils
down to a maximum likelihood loss, i.e. the destination
distribution is trained to maximize the log-likelihood
of the polyline index of the GT destination.



F. Inference Details

We use the GT destination and the most likely posterior
personality for the a posteriori simulation, hence the simula-
tion is single modal in this case. For a priori simulation, i.e.
motion prediction, we generate multiple modes by randomly
sampling the destination distribution and the prior personality
of each agent. For WOMD we generate K = 6 predictions.
The first mode K0 is deterministic, which is generated using
the most likely destination and prior personality. We use this
mode to inspect the most likely mode of the joint future
prediction. The score of each prediction, which is required
by the WOMD leaderboard, is the joint probability of the
destination and the personality. We normalize the score using
softmax with temperature. The scores are computed with
respect to agents, not the joint future of all agents. For
motion prediction where the future traffic light states are not
available, we use the last observed (i.e. from the current step
t = 0) light states for all prediction steps.

G. More Experimental Results

In Table III we compare TrafficBots with other open-loop
motion prediction methods on the Waymo (joint) interactive
prediction leaderboard, where the joint future of exactly two
agents shall be predicted and the metrics are evaluated at
the scene-level, i.e. for both agents at the same time. For
a more detailed description on the task and the metrics,
please refer to the publication [44] or the homepage of the
WOMD. Since our method is essentially solving the joint
future prediction, TrafficBots significantly outperforms the
baselines on this task. As shown in Table III, we achieve
overall better performance than the LSTM baseline [44].
TrafficBots also perform better than HeatIRm4 [48], the
winner of the 2021 WOMD challenge, and Air2 [47], the
honorable mention of the 2021 WOMD challenge, in terms
of the mAP and the overlap rate, which are the most
relevant metrics used for the ranking. Our performance is
comparable to SceneTransformer (J), the joint version of
SceneTransformer [12]. Compared to DenseTNT [18], we
achieve a lower overlap rate. As discussed in the main paper,
our method suffers from larger minADE/FDE and the per-
formance can be improved given additional GT information.
These trends are also observed in Table III. Although the
(joint) interactive prediction is a more favorable task for
our method, we do not include Table III in the main paper
because this leaderboard is partially deprecated and hence
less active, and the predictions are restricted to two agents
which significantly limits its application in the real world.
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