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Abstract

Monocular depth estimation is fundamental for 3D scene
understanding and downstream applications. However, even
under the supervised setup, it is still challenging and ill-
posed due to the lack of full geometric constraints. Although
a scene can consist of millions of pixels, there are fewer
high-level patterns. We propose iDisc to learn those patterns
with internal discretized representations. The method im-
plicitly partitions the scene into a set of high-level patterns.
In particular, our new module, Internal Discretization (ID),
implements a continuous-discrete-continuous bottleneck to
learn those concepts without supervision. In contrast to
state-of-the-art methods, the proposed model does not en-
force any explicit constraints or priors on the depth output.
The whole network with the ID module can be trained end-
to-end, thanks to the bottleneck module based on attention.
Our method sets the new state of the art with significant
improvements on NYU-Depth v2 and KITTI, outperform-
ing all published methods on the official KITTI benchmark.
iDisc can also achieve state-of-the-art results on surface
normal estimation. Further, we explore the model gener-
alization capability via zero-shot testing. We observe the
compelling need to promote diversification in the outdoor
scenario. Hence, we introduce splits of two autonomous
driving datasets, DDAD and Argoverse. Code is available
at http://vis.xyz/pub/idisc.

1. Introduction

Depth estimation is essential in computer vision, espe-
cially for understanding geometric relations in a scene. This
task consists in predicting the distance between the projec-
tion center and the 3D point corresponding to each pixel.
Depth estimation finds direct significance in downstream
applications such as 3D modeling, robotics, and autonomous
cars. Some research [67] shows that depth estimation is
a crucial prompt to be leveraged for action reasoning and
execution. In particular, we tackle the task of monocular
depth estimation (MDE). MDE is an ill-posed problem due
to its inherent scale ambiguity: the same 2D input image can
correspond to an infinite number of 3D scenes.

(a) Input image (b) Output depth

(c) Intermediate representations (d) Internal discretization

Figure 1. We propose iDisc which implicitly enforces an internal
discretization of the scene via a continuous-discrete-continuous
bottleneck. Supervision is applied to the output depth only, i.e., the
fused intermediate representations in (c), while the internal discrete
representations are implicitly learned by the model. (d) displays
some actual internal discretization patterns captured from the input,
e.g., foreground, object relationships, and 3D planes. Our iDisc
model is able to predict high-quality depth maps by capturing scene
interactions and structure.

State-of-the-art (SotA) methods typically involve convo-
lutional networks [14, 15, 27] or, since the advent of vision
Transformer [13], transformer architectures [5, 46, 59, 64].
Most methods either impose geometric constraints on the
image [25, 37, 42, 60], namely, planarity priors or explicitly
discretize the continuous depth range [5,6,15]. The latter can
be viewed as learning frontoparallel planes. These imposed
priors inherently limit the expressiveness of the respective
models, as they cannot model arbitrary depth patterns, ubiq-
uitous in real-world scenes.

We instead propose a more general depth estimation
model, called iDisc, which does not explicitly impose any
constraint on the final prediction. We design an Internal
Discretization (ID) of the scene which is in principle depth-
agnostic. Our assumption behind this ID is that each scene
can be implicitly described by a set of concepts or patterns,
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such as objects, planes, edges, and perspectivity relation-
ships. The specific training signal determines which patterns
to learn (see Fig. 1).

We design a continuous-to-discrete bottleneck through
which the information is passed in order to obtain such inter-
nal scene discretization, namely the underlying patterns. In
the bottleneck, the scene feature space is partitioned via
learnable and input-dependent quantizers, which in turn
transfer the information onto the continuous output space.
The ID bottleneck introduced in this work is a general con-
cept and can be implemented in several ways. Our partic-
ular ID implementation employs attention-based operators,
leading to an end-to-end trainable architecture and input-
dependent framework. More specifically, we implement
the continuous-to-discrete operation via “transposed” cross-
attention, where transposed refers to applying softmax on
the output dimension. This softmax formulation enforces
the input features to be routed to the internal discrete rep-
resentations (IDRs) in an exclusive fashion, thus defining
an input-dependent soft clustering of the feature space. The
discrete-to-continuous transformation is implemented via
cross-attention. Supervision is only applied to the final out-
put, without any assumptions or regularization on the IDRs.

We test iDisc on multiple indoor and outdoor datasets
and probe its robustness via zero-shot testing. As of to-
day, there is too little variety in MDE benchmarks for the
outdoor scenario, since the only established benchmark is
KITTI [19]. Moreover, we observe that all methods fail on
outdoor zero-shot testing, suggesting that the KITTI dataset
is not diverse enough and leads to overfitting, thus implying
that it is not indicative of generalized performance. Hence,
we find it compelling to establish a new benchmark setup
for the MDE community by proposing two new train-test
splits of more diverse and challenging high-quality outdoor
datasets: Argoverse1.1 [10] and DDAD [20].

Our main contributions are as follows: (i) we introduce
the Internal Discretization module, a novel architectural com-
ponent that adeptly represents a scene by combining under-
lying patterns; (ii) we show that it is a generalization of SotA
methods involving depth ordinal regression [5, 15]; (iii) we
propose splits of two raw outdoor datasets [10,20] with high-
quality LiDAR measurements. We extensively test iDisc on
six diverse datasets and, owing to the ID design, our model
consistently outperforms SotA methods and presents better
transferability. Moreover, we apply iDisc to surface nor-
mal estimation showing that the proposed module is general
enough to tackle generic real-valued dense prediction tasks.

2. Related Work
The supervised setting of MDE assumes that pixel-wise

depth annotations are available at training time and depth
inference is performed on single images. The coarse-to-
fine network introduced in Eigen et al. [14] is the cor-

nerstone in MDE with end-to-end neural networks. The
work established the optimization process via the Scale-
Invariant log loss (SIlog). Since then, the three main di-
rections evolve: new architectures, such as residual net-
works [26], neural fields [34, 57], multi-scale fusion [28, 39],
transformers [5, 59, 64]; improved optimization schemes,
such as reverse-Huber loss [26], classification [8], or ordinal
regression [5, 15]; multi-task learning to leverage ancillary
information from the related task, such as surface normals
estimation or semantic segmentation [14, 43, 56].
Geometric priors have been widely utilized in the literature,
particularly the piecewise planarity prior [7, 11, 16], serving
as a proper real-world approximation. The geometric pri-
ors are usually incorporated by explicitly treating the image
as a set of planes [30, 32, 33, 63], using a plane-inducing
loss [62], forcing pixels to attend to the planar representation
of other pixels [27, 42], or imposing consistency with other
tasks’ output [4, 37, 60], like surface normals. Priors can
focus on a more holistic scene representation by dividing
the whole scene into 3D planes without dependence on in-
trinsic camera parameters [58,65], aiming at partitioning the
scene into dominant depth planes. In contrast to geometric
prior-based works, our method lifts any explicit geometric
constraints on the scene. Instead, iDisc implicitly enforces
the representation of scenes as a set of high-level patterns.
Ordinal regression methods [5, 6, 15] have proven to be a
promising alternative to other geometry-driven approaches.
The difference with classification models is that class “val-
ues” are learnable and are real numbers, thus the problem
falls into the regression category. The typical SotA ratio-
nale is to explicitly discretize the continuous output depth
range, rendering the approach similar to mask-based seg-
mentation. Each of the scalar depth values is associated with
a confidence mask which describes the probability of each
pixel presenting such a depth value. Hence, SotA methods
inherently assume that depth can be represented as a set of
frontoparallel planes, that is, depth “masks”.

The main paradigm of ordinal regression methods is to
first obtain hidden representations and scalar values of dis-
crete depth values. The dot-product similarity between the
feature maps and the depth representations is treated as log-
its and softmax is applied to extract confidence masks (in
Fu et al. [15] this degenerates to argmax). Finally, the final
prediction is defined as the per-pixel weighted average of
the discrete depth values, with the confidence values serving
as the weights. iDisc draws connections with the idea of
depth discretization. However, our ID module is designed to
be depth-agnostic. The discretization occurs at the abstract
level of internal features from the ID bottleneck instead of
the output depth level, unlike other methods.
Iterative routing is related to our “transposed” cross-
attention. The first approach of this kind was Capsule Net-
works and their variants [23,47]. Some formulations [36,51]
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Figure 2. Model Architecture. The Internal Discretization Module imposes an information bottleneck via two consecutive stages:
continuous-to-discrete (C2D) and discrete-to-continuous (D2C). The module processes multiple resolutions, i.e., l ∈ {1, 2, 3}, independently
in parallel. The bottleneck embodies our assumption that a scene can be represented as a set of patterns. The C2D stage aggregates
information, given a learnable prior (Hl

prior), from the l-th resolution feature maps (Fl) to a finite set of IDRs (Hl). In particular, it learns
how to define a partition function that is dependent on the input Fl via transposed cross-attention, as in (1). The second stage (D2C) transfers
the IDRs on the original continuous space using layers of cross-attention as in (2), for sake of simplicity, we depict only a generic i-th layer.
Cross-attention is guided by the similarity between decoded pixel embeddings (Pl) and Hl. The final prediction (D̂) is the fusion, i.e.,
mean, of the intermediate representations {D̂l}3l=1.

employ different kinds of attention mechanisms. Our atten-
tion mechanism draws connections with [36]. However, we
do not allow permutation invariance, since our assumption
is that each discrete representation internally describes a par-
ticular kind of pattern. In addition, we do not introduce any
other architectural components such as gated recurrent units
(GRU). In contrast to other methods, our attention is em-
ployed at a higher abstraction level, namely in the decoder.

3. Method

We propose an Internal Discretization (ID) module, to dis-
cretize the internal feature representation of encoder-decoder
network architectures. We hypothesize that the module can
break down the scenes into coherent concepts without seman-
tic supervision. This section will first describe the module
design and then discuss the network architecture. Sec. 3.1.1
defines the formulation of “transposed” cross-attention out-
lined in Sec. 1 and describes the main difference with pre-
vious formulations from Sec. 2. Moreover, we derive in
Sec. 3.1.2 how the iDisc formulation can be interpreted as a
generalization of SotA ordinal regression methods by refram-
ing their original formulation. Eventually, Sec. 3.2 presents
the optimization problem and the overall architecture.

3.1. Internal Discretization Module

The ID module involves a continuous-discrete-continuous
bottleneck composed of two main consecutive stages. The
overall module is based on our hypothesis that scenes can
be represented as a finite set of patterns. The first stage

consists in a continuous-to-discrete component, namely soft-
exclusive discretization of the feature space. More specifi-
cally, it enforces an input-dependent soft clustering on the
feature maps in an image-to-set fashion. The second stage
completes the internal scene discretization by mapping the
learned IDRs onto the continuous output space. IDRs are
not bounded to focus exclusively on depth planes but are
allowed to represent any high-level pattern or concept, such
as objects, relative locations, and planes in the 3D space. In
contrast with SotA ordinal regression methods [5, 6, 15], the
IDRs are neither explicitly tied to depth values nor directly
tied to the output. Moreover, our module operates at multiple
intermediate resolutions and merges them only in the last
layer. The overall architecture of iDisc, particularly our ID
module, is shown in Fig. 2.

3.1.1 Adaptive Feature Partitioning

The first stage of our ID module, Adaptive Feature Partition-
ing (AFP), generates proper discrete representations (H :=
{Hl}3l=1) that quantize the feature space (F := {Fl}3l=1)
at each resolution l. We drop the resolution superscript l
since resolutions are independently processed and only one
generic resolution is treated here. iDisc does not simply learn
fixed centroids, as in standard clustering, but rather learns
how to define a partition function in an input-dependent fash-
ion. More specifically, an iterative transposed cross-attention
module is utilized. Given the specific input feature maps (F),
the iteration process refines (learnable) IDR priors (Hprior)
over R iterations.
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More specifically, the term “transposed” refers to the
different axis along which the softmax operation is ap-
plied, namely

[
softmax(KQT )

]T
V instead of the canoni-

cal dot-product attention softmax(QKT )V, with Q,K,V
as query, key and value tensors, respectively. In particular,
the tensors are obtained as projections of feature maps and
IDR priors, fQ(Hprior), fK(F), fV(F). The t-th iteration
out of R can be formulated as follows:

W t
ij =

exp(kT
i q

t
j)∑N

k=1 exp(k
T
i q

t
k)

,qt+1
j =

M∑
i=1

W t
ijvi, (1)

where qj ,ki,vi ∈ RC are query, key and value respectively,
N is the number of IDRs, nameley, clusters, and M is the
number of pixels. The weights Wij may be normalized to 1
along the i dimension to avoid vanishing or exploding quan-
tities due to the summation of un-normalized distribution.

The quantization stems from the inherent behavior of
softmax. In particular, softmax forces competition among
outputs: one output can be large only to the detriment of oth-
ers. Therefore, when fixing i, namely, given a feature, only
a few attention weights (Wij) may be significantly greater
than zero. Hence, the content vi is routed only to a few IDRs
at the successive iteration. Feature maps are fixed during the
process and weights are shared by design, thus {ki,vi}Mi=1

are the same across iterations. The induced competition
enforces a soft clustering of the input feature space, where
the last-iteration IDR represents the actual partition function
(H := QR). The probabilities of belonging to one partition
are the attention weights, namely WR

ij with j-th query fixed.
Since attention weights are inherently dependent on the in-
put, the specific partitioning also depends on the input and
takes place at inference time. The entire process of AFP
leads to (soft) mutually exclusive IDRs.

As far as the partitioning rationale is concerned, the pro-
posed AFP draws connections with iterative routing methods
described in Sec. 2. However, important distinctions apply.
First, IDRs are not randomly initialized as the “slots” in
Locatello et al. [36] but present a learnable prior. Priors can
be seen as learnable positional embeddings in the attention
context, thus we do not allow a permutation-invariant set
of representations. Moreover, non-adaptive partitioning can
still take place via the learnable priors if the iterations are
zero. Second, the overall architecture differs noticeably as
described in Sec. 2, and in addition, iDisc partitions feature
space at the decoder level, corresponding to more abstract,
high-level concepts, while the SotA formulations focus on
clustering at an abstraction level close to the input image.

One possible alternative approach to obtaining the afore-
mentioned IDRs is the well-known image-to-set proposed
in DETR [9], namely via classic cross-attention between
representations and image feature maps. However, the corre-
sponding representations might redundantly aggregate fea-
tures, where the extreme corresponds to each output being

the mean of the input. Studies [17, 49] have shown that
slow convergence in transformer-based architectures may
be due to the non-localized context in cross-attention. The
exclusiveness of the IDRs discourages the redundancy of
information in different IDRs. We argue that exclusiveness
allows the utilization of fewer representations (32 against
the 256 utilized in [5] and [15]), and can improve both the
interpretability of what IDRs are responsible for and training
convergence.

3.1.2 Internal Scene Discretization

In the second stage of the ID module, Internal Scene Dis-
cretization (ISD), the module ingests pixel embeddings
(P := {Pl}3l=1) from the decoder and IDRs H from the
first stage, both at different resolutions l, as shown in Fig. 2.
Each discrete representation carries both the signature, as
the key, and the output-related content, as the value, of the
pattern it represents. The similarity between IDRs and pixel
embeddings is computed in order to spatially localize in the
continuous output space where to transfer the information of
each IDR. We utilize the dot-product similarity function.

Furthermore, the kind of information to transfer onto
the final prediction is not constrained, as we never explicitly
handle depth values, usually called bins, until the final output.
Thus, the IDRs are completely free to carry generic high-
level concepts (such as object-ness, relative positioning, and
geometric structures). This approach is in stark contrast with
SotA methods [5, 6, 15, 31], which explicitly constrain what
the representations are about: scalar depth values. Instead,
iDisc learns to generate unconstrained representations in an
input-dependent fashion. The effective discretization of the
scene occurs in the second stage thanks to the information
transfer from the set of exclusive concepts (H) from AFP to
the continuous space defined by P . We show that our method
is not bounded to depth estimation, but can be applied to
generic continuous dense tasks, for instance, surface normal
estimation. Consequently, we argue that the training signal
of the task at hand determines how to internally discretize
the scene, rendering our ID module general and usable in
settings other than depth estimation.

From a practical point of view, the whole second stage
consists in cross-attention layers applied to IDRs and pixel
embeddings. As described in Sec. 3.1.1, we drop the res-
olution superscript l. After that, the final depth maps are
projected onto the output space and the multi-resolution
depth predictions are combined. The i-th layer is defined as:

Di+1 = softmax(QiK
T
i )Vi +Di, (2)

where Qi = fQi
(P) ∈ RH×W×C , P are pixel embed-

dings with shape (H,W ), and Ki,Vi ∈ RN×C are the N
IDRs under linear transformations fKi(H), fVi(H). The
term QiK

T
i determines the spatial location for which each
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specific IDR is responsible, while Vi carries the semantic
content to be transferred in the proper spatial locations.

Our approach constitutes a generalization of depth es-
timation methods that involve (hybrid) ordinal regression.
As described in Sec. 2, the common paradigm in ordinal
regression methods is to explicitly discretize depth in a set
of masks with a scalar depth value associated with it. Then,
they predict the likelihood that each pixel belongs to such
masks. Our change of paradigm stems from the reinterpreta-
tion of the mentioned ordinal regression pipeline which we
translate into the following mathematical expression:

D = softmax(PRT / T )v, (3)

where P are the pixel embeddings at maximum resolution
and T is the softmax temperature. v ∈ RN×1 are N
depth scalar values and R ∈ RN×(C−1) are their hidden
representations, both processed as a unique stacked tensor
(R||v ∈ RN×C). From the reformulation in (3), one can
observe that (3) is a degenerate case of (2). In particular, fQ
degenerates to the identity function. fK and fV degenerate
to selector functions: the former function selects up to the
C − 1 dimensions and the latter selects the last dimension
only. Moreover, the hidden representations are refined pixel
embeddings (f(Pi) = Hi = R||v), and D in (3) is the final
output, namely no multiple iterations are performed as in
(2). The explicit entanglement between the semantic content
of the hidden representations and the final output is due to
hard-coding v as depth scalar values.

3.2. Network Architecture

Our network described in Fig. 2 comprises first an encoder
backbone, interchangeably convolutional or attention-based,
producing features at different scales. The encoded features
at different resolutions are refined, and information between
resolutions is shared, both via four multi-scale deformable at-
tention (MSDA) blocks [68]. The feature maps from MSDA
at different scales are fed into the AFP module to extract
IDRs (H), and into the decoder to extract pixel embeddings
in the continuous space (P). Pixel embeddings at different
resolutions are combined with the respective IDRs in the ISD
stage of the ID module to extract the depth maps. The final
depth prediction corresponds to the mean of the interpolated
intermediate representations. The optimization process is
guided only by the established SIlog loss defined in [14], and
no other regularization is exploited. SIlog is defined as:

LSIlog(ϵ) = α
√
V[ϵ] + λE2[ϵ]

with ϵ = log(ŷ)− log(y∗),
(4)

where ŷ is the predicted depth and y∗ is the ground-truth
(GT) value. V[ϵ] and E[ϵ] are computed as the empirical
variance and expected value over all pixels, namely, {ϵi}Ni=1.
V[ϵ] is the purely scale-invariant loss, while E2[ϵ] fosters a
proper scale. α and λ are set to 10 and 0.15, as customary.

Image+GT AdaBins [5] NeWCRF [64] Ours

Figure 3. Qualitative results on NYU. Each pair of consecutive
rows corresponds to one test sample. Each odd row shows the input
RGB image and depth predictions for the selected methods. Each
even row shows GT depth and the prediction errors of the selected
methods clipped at 0.5 meters. The error color map is coolwarm:
blue corresponds to lower error values and red to higher values.

4. Experiments

4.1. Experimental Setup

4.1.1 Datasets

NYU-Depth V2. NYU-Depth V2 (NYU) [40] is a dataset
consisting of 464 indoor scenes with RGB images and quasi-
dense depth images with 640×480 resolution. Our models
are trained on the train-test split proposed by previous meth-
ods [27], corresponding to 24,231 samples for training and
654 for testing. In addition to depth, the dataset provides
surface normal data utilized for normal estimation. The train
split used for normal estimation is the one proposed in [60].
Zero-shot testing datasets. We evaluate the generalizability
of indoor models on two indoor datasets which are not seen
during training. The selected datasets are SUN-RGBD [48]
and DIODE-Indoor [52]. For both datasets, the resolution is
reduced to match that of NYU, which is 640×480.
KITTI. The KITTI dataset provides stereo images and corre-
sponding Velodyne LiDAR scans of outdoor scenes captured
from a moving vehicle [19]. RGB and depth images have
(mean) resolution of 1241×376. The split proposed by [14]
(Eigen-split) with corrected depth is utilized as training and
testing set, namely, 23,158 and 652 samples. The evaluation
crop corresponds to the crop defined by [18]. All methods in
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Figure 4. Attention maps on NYU for three different IDRs.
Each row presents the attention map of a specific IDR for four
test images. Each discrete representation focuses on a specific
high-level concept. The first two rows pertain to IDRs at the lowest
resolution while the last corresponds to the highest resolution. Best
viewed on a screen and zoomed in.

Sec. 4.2 that have source code and pre-trained models avail-
able are re-evaluated on KITTI with the evaluation mask
from [18] to have consistent results.
Argoverse1.1 and DDAD. We propose splits of two au-
tonomous driving datasets, Argoverse1.1 (Argoverse) [10]
and DDAD [20], for depth estimation. Argoverse and DDAD
are both outdoor datasets that provide 360◦ HD images and
the corresponding LiDAR scans from moving vehicles. We
pre-process the original datasets to extract depth maps and
avoid redundancy. Training set scenes are sampled when
the vehicle has been displaced by at least 2 meters from the
previous sample. For the testing set scenes, we increase this
threshold to 50 meters to further diminish redundancy. Our
Argoverse split accounts for 21,672 training samples and
476 test samples, while DDAD for 18,380 training and 860
testing samples. Samples in Argoverse are taken from the 6
cameras covering the full 360◦ panorama. For DDAD, we
exclude 2 out of the 6 cameras since they have more than
30% pixels occluded by the camera capture system. We
crop both RGB images and depth maps to have 1920×870
resolution that is 180px and 210px cropped from the top
for Argoverse and DDAD, respectively, to crop out a large
portion of the sky and regions occluded by the ego-vehicle.
For both datasets, we clip the maximum depth at 150m.

4.1.2 Implementation Details

Evaluation Details. In all experiments, we do not exploit
any test-time augmentations (TTA), camera parameters, or
other tricks and regularizations, in contrast to many previous
methods [5,15,27,42,64]. This provides a more challenging
setup, which allows us to show the effectiveness of iDisc.
As depth estimation metrics, we utilize root mean square
error (RMS) and its log variant (RMSlog), absolute error
in log-scale (Log10), absolute (A.Rel) and squared (S.rel)
mean relative error, the percentage of inlier pixels (δi) with

Table 1. Comparison on NYU official test set. R101: ResNet-
101 [21], D161: DenseNet-161 [24], EB5: EfficientNet-B5 [50],
HR48: HRNet-48 [53], DD22: DRN-D-22 [61], ViTB: ViT-
B/16+Resnet-50 [13], MViT: EfficientNet-B5-AP [55]+MiniViT,
Swin{L, B, T}: Swin-{Large, Base, Tiny} [35]. (†): ImageNet-
22k [12] pretraining, (‡): non-standard training set, (∗): in-house
dataset pretraining, (§): re-evaluated without GT-based rescaling.

Method Encoder δ1 δ2 δ3 RMS A.Rel Log10

Higher is better Lower is better

Eigen et al. [14] - 0.769 0.950 0.988 0.641 0.158 −
DORN [15] R101 0.828 0.965 0.992 0.509 0.115 0.051
VNL [60] - 0.875 0.976 0.994 0.416 0.108 0.048
BTS [27] D161 0.885 0.978 0.994 0.392 0.110 0.047
AdaBins‡ [5] MViT 0.903 0.984 0.997 0.364 0.103 0.044
DAV [25] DD22 0.882 0.980 0.996 0.412 0.108 −
Long et al. [37] HR48 0.890 0.982 0.996 0.377 0.101 0.044
TransDepth [59] ViTB 0.900 0.983 0.996 0.365 0.106 0.045
DPT* [46] ViTB 0.904 0.988 0.998 0.357 0.110 0.045
P3Depth§ [42] R101 0.830 0.971 0.995 0.450 0.130 0.056
NeWCRF [64] SwinL† 0.922 0.992 0.998 0.334 0.095 0.041
LocalBins‡ [6] MViT 0.907 0.987 0.998 0.357 0.099 0.042

Ours R101 0.892 0.983 0.995 0.380 0.109 0.046
EB5 0.903 0.986 0.997 0.369 0.104 0.044
SwinT 0.894 0.983 0.996 0.377 0.109 0.045
SwinB 0.926 0.989 0.997 0.327 0.091 0.039
SwinL† 0.940 0.993 0.999 0.313 0.086 0.037

threshold 1.25i, and scale-invariant error in log-scale (SIlog):
100

√
Var(ϵlog). The maximum depth for NYU and all zero-

shot testing in indoor datasets, specifically SUN-RGBD and
Diode Indoor, is set to 10m, while for KITTI it is set to 80m
and for Argoverse and DDAD to 150m. Zero-shot testing is
performed by evaluating a model trained on either KITTI or
NYU and tested on either outdoor or indoor datasets, respec-
tively, without additional fine-tuning. For surface normals
estimation, the metrics are mean (Mean) and median (Med)
absolute error, RMS angular error, and percentages of inlier
pixels with thresholds at 11.5◦, 22.5◦, and 30◦. GT-based
mean depth rescaling is applied only on Diode Indoor for all
methods since the dataset presents largely scale-equivariant
scenes, such as plain walls with tiny details.
Training Details. We implement iDisc in PyTorch [41].
For training, we use the AdamW [38] optimizer (β1 = 0.9,
β2 = 0.999) with an initial learning rate of 0.0002 for every
experiment, and weight decay set to 0.02. As a scheduler, we
exploit Cosine Annealing starting from 30% of the training,
with final learning rate of 0.00002. We run 45k optimization
iterations with a batch size of 16. All backbones are initial-
ized with weights from ImageNet-pretrained models. The
augmentations include both geometric (random rotation and
scale) and appearance (random brightness, gamma, satura-
tion, hue shift) augmentations. The required training time
amounts to 20 hours on 4 NVidia Titan RTX.

4.2. Comparison with the State of the Art

Indoor Datasets. Results on NYU are presented in Table 1.
The results show that we set the new state of the art on the
benchmark, improving by more than 6% on RMS and 9% on
A.Rel over the previous SotA. Moreover, results highlight
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Table 2. Zero-shot testing of models trained on NYU. All meth-
ods are trained on NYU and tested without further fine-tuning on
the official validation set of SUN-RGBD and Diode Indoor.

Test set Method δ1 ↑ RMS ↓ A.Rel ↓ SIlog ↓
SUN-RGBD BTS [27] 0.745 0.502 0.168 14.25

AdaBins [5] 0.768 0.476 0.155 13.20
P3Depth [42] 0.698 0.541 0.178 15.02
NeWCRF [64] 0.799 0.429 0.150 11.27

Ours 0.838 0.387 0.128 10.91

Diode BTS [27] 0.705 0.965 0.211 23.78
AdaBins [5] 0.733 0.872 0.209 22.54
P3Depth [42] 0.732 0.877 0.202 22.16
NeWCRF [64] 0.799 0.769 0.164 18.69

Ours 0.810 0.721 0.156 18.11

how iDisc is more sample-efficient than other transformer-
based architectures [5, 6, 46, 59, 64] since we achieve better
results even when employing smaller and less heavily pre-
trained backbone architectures. In addition, results show
a significant improvement in performance with our model
instantiated with a full-convolutional backbone over other
full-convolutional-based models [14, 15, 25, 27, 42]. Table 2
presents zero-shot testing of NYU models on SUN-RGBD
and Diode. In both cases, iDisc exhibits a compelling gener-
alization performance, which we argue is due to implicitly
learning the underlying patterns, namely, IDRs, of indoor
scene structure via the ID module.

Qualitative results in Fig. 3 emphasize how the method
excels in capturing the overall scene complexity. In partic-
ular, iDisc correctly captures discontinuities without depth
over-excitation due to chromatic edges, such as the sink in
row 1, and captures the right perspectivity between fore-
ground and background depth planes such as between the
bed (row 2) or sofa (row 3) and the walls behind. In addition,
the model presents a reduced error around edges, even when
compared to higher-resolution models such as [5]. We argue
that iDisc actually reasons at the pattern level, thus capturing
better the structure of the scene. This is particularly appre-
ciable in indoor scenes, since these are usually populated
by a multitude of objects. This behavior is displayed in the
attention maps of Fig. 4. Fig. 4 shows how IDRs at lower
resolution capture specific components, such as the relative
position of the background (row 1) and foreground objects
(row 2), while IDRs at higher resolution behave as depth
refiners, attending typically to high-frequency features, such
as upper (row 3) or lower borders of objects. It is worth
noting that an IDR attends to the image borders when the
particular concept it looks for is not present in the image.
That is, the borders are the last resort in which the IDR tries
to find its corresponding pattern (e.g., row 2, col. 1).
Outdoor Datasets. Results on KITTI in Table 3 demon-
strate that iDisc sets the new SotA for this primary outdoor
dataset, improving by more than 3% in RMS and by 0.9% in
δ0.5 over the previous SotA. However, KITTI results present
saturated metrics. For instance, δ3 is not reported since ev-

Table 3. Comparison on KITTI Eigen-split test set. Models
without δ0.5 have implementation (partially) unavailable. R101:
ResNet-101 [21], D161: DenseNet-161 [24], EB5: EfficientNet-
B5 [50], ViTB: ViT-B/16+Resnet-50 [13], MViT: EfficientNet-B5-
AP [55]+MiniViT, Swin{L, B, T}: Swin-{Large, Base, Tiny} [35].
(†): ImageNet-22k [12] pretraining, (‡): non-standard training set,
(∗): in-house dataset pretraining, (§): re-evaluated without GT-
based rescaling.

Method Encoder δ0.5 δ1 δ2 RMS RMSlog A.Rel S.Rel
Higher is better Lower is better

Eigenet al. [14] − − 0.692 0.899 7.156 0.270 0.190 1.515
DORN [15] R101 − 0.932 0.984 2.727 0.120 0.072 0.307
BTS [27] D161 0.870 0.964 0.995 2.459 0.090 0.057 0.199
AdaBins‡ [5] MViT 0.868 0.964 0.995 2.360 0.088 0.058 0.198
TransDepth [59] ViTB − 0.956 0.994 2.755 0.098 0.064 0.252
DPT* [46] ViTB 0.865 0.965 0.996 2.315 0.088 0.059 0.190
P3Depth§ [42] R101 0.852 0.959 0.994 2.519 0.095 0.060 0.206
NeWCRF [64] SwinL† 0.887 0.974 0.997 2.129 0.079 0.052 0.155

Ours R101 0.860 0.965 0.996 2.362 0.090 0.059 0.197
EB5 0.852 0.963 0.994 2.510 0.094 0.063 0.223
SwinT 0.870 0.968 0.996 2.291 0.087 0.058 0.184
SwinB 0.885 0.974 0.997 2.149 0.081 0.054 0.159
SwinL† 0.896 0.977 0.997 2.067 0.077 0.050 0.145

Table 4. Comparison on Argoverse and DDAD proposed splits.
Comparison of performance of methods trained on either Argoverse
or DDAD and tested on the same dataset.

Dataset Method δ1 δ2 δ3 RMS RMSlog A.Rel S.Rel
Higher is better Lower is better

Argoverse BTS [27] 0.780 0.908 0.954 8.319 0.267 0.186 2.56
AdaBins [5] 0.750 0.901 0.952 8.686 0.278 0.195 2.36
NeWCRF [64] 0.707 0.871 0.939 9.437 0.321 0.232 3.23

Ours 0.821 0.923 0.960 7.567 0.243 0.163 2.22

DDAD BTS [27] 0.757 0.913 0.962 10.11 0.251 0.186 2.27
AdaBins [5] 0.748 0.912 0.962 10.24 0.255 0.201 2.30
NeWCRF [64] 0.702 0.881 0.951 10.98 0.271 0.219 2.83

Ours 0.809 0.934 0.971 8.989 0.221 0.163 1.85

ery method scores > 0.99, with recent ones scoring 0.999.
Therefore, we propose to utilize the metric δ0.5, to better con-
vey meaningful evaluation information. In addition, iDisc
performs remarkably well on the highly competitive official
KITTI benchmark, ranking 3rd among all methods and 1st

among all published MDE methods.
Moreover, Table 4 shows the results of methods trained

and evaluated on the splits from Argoverse and DDAD pro-
posed in this work. All methods have been trained with the
same architecture and pipeline utilized for training on KITTI.
We argue that the high degree of sparseness in GT of the
two proposed datasets, in contrast to KITTI, deeply affects
windowed methods such as [5, 64]. Qualitative results in
Fig. 5 suggest that the scene level discretization leads to
retaining small objects and sharp transitions between fore-
ground objects and background: background in row 1, and
boxes in row 2. These results show the better ability of
iDisc to capture fine-grained depth variations on close-by
and similar objects, including crowd in row 3. Zero-shot
testing from KITTI to DDAD and Argoverse are presented
in Supplement.
Surface Normals Estimation. We emphasize that the pro-
posed method has more general applications by testing iDisc
on a different continuous dense prediction task such as sur-
face normals estimation. Results in Table 5 evidence that we
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Image AdaBins [5] NeWCRF [64] Ours

Figure 5. Qualitative results on KITTI. Three zoomed-in crops of different test images are shown. The comparisons show the ability of
iDisc to capture small details, proper background transition, and fine-grained variations in, e.g., crowded scenes. Best viewed on a screen.

Table 5. Comparison of surface normals estimation methods
on NYU official test set. iDisc architecture and training pipeline
is the same as the one utilized for indoor depth estimation.

Method 11.5◦ 22.5◦ 30◦ RMS Mean Med
Higher is better Lower is better

SURGE [54] 0.473 0.689 0.766 − 20.6 12.2
GeoNet [43] 0.484 0.484 0.795 26.9 19.0 11.8
PAP [66] 0.488 0.722 0.798 25.5 18.6 11.7
GeoNet++ [44] 0.502 0.732 0.807 26.7 18.5 11.2
Bae et al. [3] 0.622 0.793 0.852 23.5 14.9 7.5

Ours 0.638 0.798 0.856 22.8 14.6 7.3

set the new state of the art on surface normals estimation. It
is worth mentioning that all other methods are specifically
designed for normals estimation, while we keep the same
architecture and framework from indoor depth estimation.

4.3. Ablation study

The importance of each component introduced in iDisc is
evaluated by ablating the method in Table 6.
Depth Discretization. Internal scene discretization provides
a clear improvement over its explicit counterpart (row 3 vs.
2), which is already beneficial in terms of robustness. Adding
the MSDA module on top of explicit discretization (row 5)
recovers part of the performance gap between the latter and
our full method (row 8). We argue that MSDA recovers a
better scene scale by refining feature maps at different scales
at once, which is helpful for higher-resolution feature maps.
Component Interactions. Using either the MSDA module
or the AFP module together with internal scene discretiza-
tion results in similar performance (rows 4 and 6). We argue
that the two modules are complementary, and they synergize
when combined (row 8). The complementarity can be ex-
plained as follows: in the former scenario (row 4), MSDA
preemptively refines feature maps to be partitioned by the
non-adaptive clustering, that is, by the IDR priors described
in Sec. 3, while on latter one (row 6), AFP allows the IDRs
to adapt themselves to partition the unrefined feature space
properly. Row 7 shows that the architecture closer to the
one in [36], particularly random initialization, hurts perfor-

Table 6. Ablation of iDisc. EDD: Explicit Depth Discretization
[5, 15], ISD: Internal Scene discretization, AFP: Adaptive Feature
Partitioning, MSDA: MultiScale Deformable Attention. The EDD
module, used in SotA methods, and our ISD module are mutually
exclusive. AFP with (✓R) refers to random initialization of IDRs
and architecture similar to [36]. The last row corresponds to our
complete iDisc model.

EDD ISD AFP MSDA δ1 ↑ RMS ↓ A.Rel ↓
1 ✗ ✗ ✗ ✗ 0.890 0.370 0.104
2 ✓ ✗ ✗ ✗ 0.905 0.367 0.102
3 ✗ ✓ ✗ ✗ 0.919 0.340 0.096
4 ✗ ✓ ✓ ✗ 0.931 0.319 0.091

5 ✓ ✗ ✗ ✓ 0.931 0.326 0.091
6 ✗ ✓ ✗ ✓ 0.934 0.319 0.088

7 ✗ ✓ ✓R ✓ 0.930 0.319 0.089
8 ✗ ✓ ✓ ✓ 0.940 0.313 0.086

mance since the internal representations do not embody any
domain-specific prior information.

5. Conclusion
We have introduced a new module, called Internal Dis-

cretization, for MDE. The module represents the assumption
that scenes can be represented as a finite set of patterns.
Hence, iDisc leverages an internally discretized representa-
tion of the scene that is enforced via a continuous-discrete-
continuous bottleneck, namely ID module. We have vali-
dated the proposed method, without any TTA or tricks, on the
primary indoor and outdoor benchmarks for MDE, and have
set the new state of the art among supervised approaches.
Results showed that learning the underlying patterns, while
not imposing any explicit constraints or regularization on
the output, is beneficial for performance and generalization.
iDisc also works out-of-the-box for normal estimation, beat-
ing all specialized SotA methods. In addition, we propose
two new challenging outdoor dataset splits, aiming to benefit
the community with more general and diverse benchmarks.
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A. Results

Outdoor zero-shot. We present in Table 7 the results of
models pre-trained on KITTI Eigen-split [14] and tested on
Argoverse [10] and DDAD [20] test split we proposed in
this work. The zero-shot results clearly demonstrate how
every model tends to perform poorly when trained on KITTI
and tested on a different domain. However, iDisc is able
to almost double the performance when directly trained on
either Argoverse or DDAD. This suggests that KITTI is not
indicative of generalization performance. This investigation
leads us to realize the need for more diversity in the outdoor
scenario. We address the problem by proposing new dataset
splits to train and validate models on. Fig. 16 shows how
models fail completely when predicting unseen scenario,
e.g., graffiti on a flat wall. In addition, Fig. 17 displays how
models under-scale depth when testing on domains with a
typical object size, i.e., DDAD in the United States, larger
than that of the training set, i.e., KITTI in Germany.
KITTI [19] benchmark. Table 8 clearly shows the com-
pelling performance of iDisc on the official KITTI private
test set. We show the results of the latest published methods
only. The table is from the official KITTI leaderboard.
IDRs collapse. We argue that our model is able to avoid

Table 7. Zero-shot testing of models trained on KITTI Eigen-
split. Comparison of performance when methods are trained on
KITTI Eigen-split and tested, without further fine-tuning, on the
splits of Argoverse and DDAD introduced in this work.

Test set Method δ1 ↑ RMS ↓ A.Rel ↓ SIlog ↓
Argoverse BTS [27] 0.307 15.98 0.383 51.80

AdaBins [5] 0.383 17.07 0.350 52.33
P3Depth [42] 0.277 17.97 0.376 44.09
NeWCRF [64] 0.311 15.75 0.370 46.77

Ours 0.560 12.18 0.269 33.35

DDAD BTS [27] 0.399 16.19 0.350 40.51
AdaBins [5] 0.282 18.36 0.433 50.71
P3Depth [42] 0.397 17.83 0.330 39.00
NeWCRF [64] 0.343 16.76 0.375 44.24

Ours 0.350 14.26 0.367 29.37

Table 8. Results on official KITTI [19] Benchmark. Comparison
of performance of methods trained on KITTI and tested on the
official KITTI private test set.

Method SIlog Sq.Rel A.Rel iRMS
Lower is better

PAP [66] 13.08 2.72 % 10.27 % 13.95
P3Depth [42] 12.82 2.53 % 9.92 % 13.71
VNL [60] 12.65 2.46 % 10.15 % 13.02
DORN [63] 11.77 2.23 % 8.78 % 12.98
BTS [27] 11.67 2.21 % 9.04 % 12.23
PWA [29] 11.45 2.30 % 9.05 % 12.32
ViP-DeepLab [45] 10.80 2.19 % 8.94 % 11.77
NeWCRF [64] 10.39 1.83 % 8.37 % 11.03
PixelFormer [1] 10.28 1.82 % 8.16 % 10.84

Ours (iDisc) 9.89 1.77 % 8.11 % 10.73

Table 9. Comparison on NYU with 3D metrics. F1-score for
varying threshold (m) and Chamfer distance (m) on point clouds.

Method F10.05 ↑ F10.1 ↑ F10.2 ↑ F10.3 ↑ F10.5 ↑ F10.75 ↑ DChamfer ↓
BTS [27] 24.5 47.0 72.4 84.4 93.6 97.2 0.169
AdaBins [5] 24.0 47.0 73.0 84.7 94.0 97.4 0.163
NeWCRF [64] 25.5 48.6 74.0 85.4 94.4 97.6 0.156

iDisc 27.8 52.0 77.0 87.8 95.5 98.1 0.131

Figure 6. Examples of attention maps degeneration. Each pair
of rows shows two different IDRs’ attention maps, each pair is
extracted from a different resolution. Some IDRs degenerate onto
other IDRs, avoiding over-partitioning when more IDRs than those
needed are utilized to represent the scene.

Figure 7. Attention visualization. Attention maps of three differ-
ent IDRs at mid-resolution, on four different images from NYU.

over-clustering when performing the adaptive partitioning
in AFP step. Over-clustering is the phenomenon occurring
when the number of partitions enforced is more than the
underlying true one. The ID module is able to avoid over-
clustering by degenerating some IDRs onto others, thus not
introducing any detrimental partition of the feature space.
Degeneration of the same IDR is visible in Fig. 6.
Attention depth planes. Fig. 7 shows three IDRs (each row
shows a specific IDR, as in main paper figures) at the middle
resolution. The top two rows support the “speculation” on
iDisc’s ability to still capture depth planes.
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Table 10. Computational complexity analysis on an RTX 3090
with input images of size 640×480 and SWin-L backbone.

Component Latency (ms) Throughput (fps) Parameters (M)

Encoder 23.6 42.4 194.9
MSDA 72.8 13.7 2.83
FPN 2.7 370.5 4.11
AFP 12.4 80.7 2.78
ISD 9.6 103.7 4.59

iDisc (w/o MSDA) 48.2 20.7 206.4
iDisc 121.1 8.3 209.2

Computational complexity. We provide the analysis of
the components in Table 10. Removing MSDA increases
throughput to 20fps, with only a slight loss in performance.
Note that our implementation is not fully optimized for per-
formance. NeWCRF [64] uses the same backbone but more
parameters and similar throughput to iDisc without MSDA.

B. Ablations

Number of IDRs. We ablate the model with respect to the
number of IDRs exploited by iDisc. In particular, we sweep
the number of IDRs between 2 and 128 with a base-two
log scale. The black-solid line in Fig. 8 shows the trend
of iDisc when ablating the IDRs: the optimum is reached
in the interval [8, 32]. When more representations are uti-
lized, we argue that noise is introduced in the bottleneck and
the discretization process is not actually enforced. The dis-
cretization does not occur since the number of IDRs would
be close to the number of feature map elements. On the other
hand, 2 or 4 IDRs are already enough to obtain decent results,
although not particularly visually appealing. In particular,
we speculate that the extreme case of utilizing two IDRs
can lead to the model representing the maximum depth with
one of the two representations and the minimum one with
the other. Therefore, the model is still able to interpolate
between the depth interval range. The interpolation occurs
thanks to the convex combination, defined by softmax, of
maximum and minimum depth. More specifically, softmax
is guided by the similarity between the pixel embeddings and
the corresponding depth representations. Thus, the model is
virtually able to define the full depth range via the weights
of the softmax convex combination modulated by the pixel
embeddings. When utilizing only one representation, the
model does not converge, if not to the mean scene depth.
Single resolution in ISD. The dotted-blue line in Fig. 8
shows the trend when only one resolution is processed in
the ISD stage of the ID module. In such a configuration,
the output of the ID module is directly the depth. Here, no
fusion is to be performed between different intermediate
representations. One can observe that single-resolution is
particularly affected when few IDRs are utilized. We ar-
gue that multi-resolution counterparts can compensate for
the diminished granularity of internal representation. The
compensation stems from combining different facets, i.e., at

different resolutions, of the IDRs.
Attention in AFP. The dashed-red line in Fig. 8 shows the
performance when standard cross-attention is utilized in AFP,
instead of the partition-inducing transposed cross-attention.
In this case, a high number of IDRs does not affect perfor-
mance. Here, the IDRs are additive instead of soft mutually
exclusive, i.e., the IDRs from transposed cross-attention.
Therefore, utilizing more IDRs is virtually not detrimental.
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Figure 8. Ablations on the number of IDRs and ID module’s
configurations. MR-TCA: Multi-Resolution and Transposed cross-
attention, MR-SCA: Multi-Resolution and Standard cross-attention
in AFP, Single-Resolution and Transposed cross-attention. MR-
TCA corresponds to the iDisc model. MR-SCA corresponds to us-
ing cross-attention instead of cluster-inducing transposed attention.
SR-TCA corresponds to having only one intermediate representa-
tion, namely the final depth directly. The error bar in correspon-
dence of 32 on the x-axis indicates the standard deviation.

ID module layers and iterations. Table 11 shows the abla-
tion study on the iterations and layers utilized in the stages
of the ID module. We can observe that a higher number
of transposed cross-attention, thus of iterative partitioning,
has almost no effect on performances, since the partitions
have probably converged. On the other hand, when NAFP is
one, results are similar to using only the IDRs priors since
the adaptive part is truncated too early. Iterations of ISD
stage (NISD) correspond to the number of cross-attention
layers utilized in the last stage of the ID module. iDisc is
already able to obtain good results with only one layer, while
increasing the layers may lead to overfitting. Nonetheless,
Table 12 clearly shows how the input-dependency in the
feature partitioning, i.e., NAFP greater than zero, leads to
improved generalization.

C. Network Architecture
Encoder. We show the effectiveness of our method with dif-
ferent encoders, both convolutional and transformer-based
ones, e.g., ResNet [21], EfficientNet [50] and SWin [35].
However, all of them follow the same structure, where the
receptive field of either convolution or windowed attention
is increased by decreasing the resolution of the feature maps.
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Table 11. Ablations of ID module iterations. NAFP: number of
iterations in the AFP stage, NISD: number of cross-attention layers
in ISD stage. The last row corresponds to the architecture utilized
for all other experiments.

NAFP NISD δ1 ↑ RMS ↓ A.Rel ↓
1 2 1 0.938 0.314 0.086
2 2 3 0.934 0.316 0.088
3 2 4 0.935 0.317 0.089

4 1 2 0.935 0.317 0.087
5 3 2 0.938 0.313 0.086
6 4 2 0.938 0.314 0.086

7 2 2 0.940 0.313 0.086

Table 12. Test loss for varying NAFP. The models are trained on
NYU and tested on the “Test Dataset”.

Test Dataset SIlog@NAFP = 0 SIlog@NAFP = 1 SIlog@NAFP = 2

NYU 10.43 9.471 8.845
SUN-RGBD 12.76 11.50 10.91
Diode 20.97 18.97 18.11

The final size of the feature map is 1/32 of the input image.
All backbones utilized are originally designed for classifica-
tion, thus we remove the last 3 layers, i.e., the pooling layer,
fully connected layer, and softmax layer. We employ each
backbone to generate feature maps of different resolutions,
which can be used as skip connections to the decoder.
Multi-scale deformable attention refinement. The feature
maps at different resolutions are refined via mutli-scale de-
formable attention [68]. Deformable attention efficiency
relies on attending only a few locations to compute attention
for each pixel, instead of having full connectivity likewise
standard attention. Deformable attention is also utilized to
share information at different resolutions. Each layer is com-
posed of layer normalization [2] (LN), fully connected layers
(FC), and Gaussian Error Linear Unit [22] (GeLU).
Decoder. Feature maps at different resolutions are combined
via a feature pyramidal network (FPN) which exploits LN,
GeLU activations, and convolutional layers with 3×3 kernels.
The decoder outputs at different resolutions correspond to
the set of pixel embeddings (P).
AFP and ISD. AFP stage is an iterative component, thus
weights are shared across layers. One layer comprises trans-
posed cross-attention, LN, GeLU activations, and FC layers:
three dedicated layers for key, queries and value tensors, and
one layer applied to the attention layer output. The archi-
tectural components of the ISD stage are the same as AFP’s
components, except for the use of standard cross-attention
instead of transposed one, and the weights are not shared.

D. Visualizations

Image GT Ours
Figure 9. Qualitative results on NYU for surface normals es-
timation. Each row corresponds to one test sample from NYU.
The first two columns correspond to the input image and depth
GT, respectively. The third column is the predicted normals of the
tangent plane for every pixel.
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Image GT AdaBins [5] NeWCRF [64] Ours

Figure 10. Qualitative results on NYU. Each row corresponds to one test sample from NYU. The first two columns correspond to the input
image and depth GT, respectively. Each couple afterward corresponds to the pair output depth and error map. Error maps are clipped at 0.5m
and the corresponding colormap is coolwarm.

Image GT AdaBins [5] NeWCRF [64] Ours

Figure 11. Qualitative results on Diode. Each row corresponds to one zero-shot test sample for the model trained on NYU and tested on
Diode. The first two columns correspond to the input image and depth GT, respectively. Each subsequent couple corresponds to the pair
output depth and error map. Error maps are clipped at 0.5m and the corresponding colormap is coolwarm.
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Image GT AdaBins [5] NeWCRF [64] Ours

Figure 12. Qualitative results on SUN-RGBD. Each row corresponds to one zero-shot test sample for the model trained on NYU and
tested on SUN-RGBD. The first two columns correspond to the input image and depth GT, respectively. Each subsequent couple corresponds
to the pair output depth and error map. Error maps are clipped at 0.5m and the corresponding colormap is coolwarm.

Image GT AdaBins [5] NeWCRF [64] Ours

Figure 13. Qualitative results on KITTI. Each row corresponds to a test sample from KITTI. The first two columns correspond to the
input image and depth GT, respectively. The following columns correspond to the respective models trained on KITTI.

Image GT Ours Error

Figure 14. Failure cases on KITTI. Each row corresponds to one test sample from KITTI Eigen-split validation set. The examples selected
correspond to the four worst samples in terms of absolute error. Error maps are clipped at 5m and the corresponding colormap is coolwarm.
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Figure 15. Attention maps on KITTI for three different IDRs. Each row presents the attention map of a specific IDR for four test images.
Each IDR focuses on a specific high-level concept. The first two rows pertain to IDR at the lowest resolution while the last corresponds to
the highest resolution. Best viewed on a screen and zoomed in.

Image GT Ours (w/ zero-shot) Ours

Figure 16. Qualitative results on Argoverse. Each row corresponds to one zero-shot test sample from Argoverse. The third column
displays the prediction of iDisc trained on KITTI and tested on Argoverse, while the fourth column corresponds to a model trained and
tested on Argoverse.
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Image GT Ours (zero-shot) Ours (sup.)

Figure 17. Qualitative results on DDAD. Each row corresponds to one zero-shot test sample from DDAD. The third column displays the
prediction of iDisc trained on KITTI and tested on DDAD, while the fourth corresponds column to a model trained and tested on DDAD.
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